Celebrating our 20 year anniversary

EPON vs. GPON vs 10G-PON


IT Network

Fiber Optic



IT Infrastructure

Passive Optical Networks have been implemented seamlessly in verticals like Airports, Industries, Corporate buildings, the education sector, etc., providing a high level of experience and sturdiness for end-users in these verticals. Passive Optical Network (PON) is a telecommunications network that conveys data via fiber-optic lines that utilize point-to-multipoint topology.

This network is primarily used to transmit signals simultaneously in both downstream and upstream directions. The evolution of PON is a crucial concern in the telecom industry. E-PON, G-PON, and 10g-PON are popular passive optical network types with many applications, including service support capabilities, improved performance of access nodes, and enhanced bandwidths.

Here, we will compare and contrast the three PON types’ main features to help you make out the difference among them.

Overview of EPON, GPON, and 10g-PON

Over the years, many PON standards have been designed. PON is at times called the ‘last mile’ between a provider and user. The reduced cabling infrastructure makes it ideal for home internet. An innovation integral to PON operation is WDM (Wave Division Multiplexing), mainly used to separate data streams depending on the color (wavelength) of laser light.


The ITU-T developed a gigabit passive optical network (GPON), and it utilizes IP-based protocols. It uses optical wavelength division multiplexing (WDM); hence one fiber can be used for both upstream and downstream data. It is a point to multipoint access type of network that is the de facto PON standard popularly used today.

G-PON’s primary feature is that it uses passive splitters in a fiber network to serve multiple homes and small businesses from the provider’s main office. It is also renowned for its great flexibility for various traffic types. The GPON encapsulation method can package Ethernet, VoIP, IP, and much more data types.

The upstream wavelength is configured at 1310nm and the downstream wavelength at 1490nm. Downstream speed stands at 2.5Gbps and 1.25 Gbps for upstream.


E-PON is an earlier PON standard developed by the Institute of Electrical and Electronics Engineers (IEEE). The PON type is entirely compatible with the other Ethernet standards; thus, there is neither a need for conversion nor encapsulation while connecting to Ethernet-based networks on either end. It uses WDM with optical frequencies similar to those of TDMA and GPON.

The network may at times be called Gigabit Ethernet PON or GEPON. A conventional E-PON can support speeds of up to 1.25 Gbps downstream and upstream. More like G-PON, E-PON has a range of between twenty and forty kilometers (12-24 miles) depending on the split ratio.


10G-PON, also referred to as XG-PON, was developed in 2010 as a computer networking standard for delivering shared access rates and data links over existing dark fiber. This is the ITU-T’s next-generation specification that followed the Gigabit-capable PON or G-PON. It can back the distribution of Gigabit packages.

10G-PON increases speed to 10 Gbps downstream and upstream and enables coexistence with installed devices sharing a network. Moreover, it is safe to say 10G-PON is an extension of the present G-PON.

Understanding PON in Telecom

In the realm of telecommunications, PON (Passive Optical Network) stands as a pivotal concept. But what is PON in telecom? Essentially, PON is a system that brings optical fiber cabling and signals all the way to the end user. Depending on the specific technologies and configurations, there are various types of PONs, including GPON (Gigabit Passive Optical Network), EPON (Ethernet Passive Optical Network), and the more advanced 10G-PON. Each of these has its unique characteristics, speeds, and applications. For instance, GPON speed can reach up to 2.5Gbps downstream, making it a popular choice for many telecom providers.


Diving Deeper into GPON and EPON

When comparing GPON vs EPON, it's essential to understand that while both are types of PONs, they differ in terms of their development standards and bandwidth capacities. GPON, often referred to as G-PON, is developed by the ITU-T and is known for its high capacity and flexibility, especially when handling various traffic types. On the other hand, EPON or E-PON, developed by the IEEE, aligns closely with Ethernet standards, making it a seamless fit for Ethernet-based networks. Another variant, the 10G-PON or XG-PON, offers even higher speeds, catering to the growing bandwidth demands of modern telecom networks.


The Evolution and Significance of PON

The evolution of PON, from its inception to the advanced versions like 10G GPON, showcases the telecom industry's relentless pursuit of faster and more efficient communication methods. Whether it's the best PON for a specific application or understanding the nuances of GPON vs fiber, professionals in the field continually seek to optimize and innovate. With terms like "G-PON", "E-PON", "V-PON", and "XPON" floating around, it's clear that the world of PON is vast and varied. And as the demand for high-speed, reliable internet continues to grow, especially in regions like the Philippines, the significance of PON, be it in a PON house or a large-scale telecom facility, cannot be understated.

EPON vs. GPON vs. 10G-PON Differences

Bandwidth/Data Rate

The main difference lies in the usable bandwidth each PON network offers. Users select downstream and upstream rates depending on their requirements for GPON, making it more flexible than EPON and 10G-PON, also referred to as 10g GPON. For each type, the usable bandwidth rating is as follows:

  • GPON – Downstream: 2.5Gbit/s and Upstream: 1.25 Gbit/s

  • EPON – 1 Gbit/s symmetrical bandwidth

  • 10G PON – Downstream 10Gbit/s and Upstream 2.5 Gbit/s

Reach and Popularity

The reach for each network and popularity area also vary with changes in the network. Reach can also be referred to as split ratio or the number of customers intended to be served by a PON type. GPON is mainly used in the United States, while EPON is more widespread in Asia and Europe. The area for 10G-PON as of the time this guide is written has not yet been determined.

The specific maximum reach/split ratios for each PON network type is:

  • GPON – 128 ONUs

  • EPON – 32 ONUs per OLT OR 64 FEC

  • 10G-PON – 128 users per PON or more with reach amplifiers or extenders


Monthly or daily costs per subscriber are also unique for each PON type: EPON has lower costs while GPON’s costs are slightly higher and 10G-PON highest for apparent reasons. The split ratio largely influences the costs. All the types, however, support CATV overlay.

Quality of Service

Ethernet protocol has no characteristic quality of service capability. A PON system cannot be viable without QoS. Thus, most vendors enable this using VLAN in EPON. This solves the QoS issue, but it brings about higher costs. GPON has an integrated QoS handling while 10G-PON QoS provisioning mainly depends on allocation mechanisms: the MPCP.

PON Applications

PON has gradually continued to improve, and its potential applications have also grown. Due to latency demands and bandwidth imposed by the 5G network, PON can be used to complete front haul connections, enhance connections, and reduce fiber count without compromising performance.

PON enables the integration of campus and business functions such as building management, parking, and security management with fewer dedicated equipment and cabling systems. Businesses can as well benefit from PON implementation with reduced equipment maintenance or installation costs.

PON Pros:

The pros of using PON are plenty. The most fundamental importance of PON are:

  • Increased power efficiency

  • Simplified infrastructure

  • Efficient use infrastructure

  • Easy maintenance

PON Cons:

Like anything else, PONs have their disadvantages too. The most notable are:

  • Distance – the range is limited to only 20 to 40 kilometers

  • Test access – troubleshooting can be challenging

Final Word

We have given you the best information about 10G-PON vs. E-PON vs. G-PON. Hopefully, you find the information satisfactory and educative. PON technology is a crucial way to carry over broadband access network services. As this technology continues improving, the economic and strategic advantages of PON become more compelling. The main challenges currently being addressed are range capability as well as higher splitter ratios. Together with speeds of up to 10Gbps, these enhancements will help enhance the growth of passive optical networks globally.

For more information, please reach out to us at House of I.T!